Anticancer activity of isoobtusilactone A from Cinnamomum kotoense: involvement of apoptosis, cell-cycle dysregulation, mitochondria regulation, and reactive oxygen species.
نویسندگان
چکیده
In this study, we investigate the anticancer effect of isoobtusilactone A (IOA), a constituent isolated from the leaves of Cinnamomum kotoense, on human non-small cell lung cancer (NSCLC) A549 cells. IOA was found to induce the arrest of G2-M phase, induce apoptosis, increase sub-G1, and inhibit the growth of these cells. Further investigation revealed that IOA's blockade of the cell cycle was associated with increased levels of p21/WAF1, p27 (kip1), and p53. In addition, IOA triggered the mitochondrial apoptotic pathway, as indicated by an increase in Bax/Bcl-2 ratios, resulting in a loss of mitochondrial membrane potential, release of cytochrome c, activation of caspase-9 and caspase-3, and cleavage of PARP. We also found the generation of reactive oxygen species (ROS) to be a critical mediator in IOA-induced inhibition of A549 cell growth. In antioxidant and NO inhibitor studies, we found that by pretreating A549 cells with either N-acetylcystenine (NAC), catalase, mannitol, dexamethasone, trolox, or L-NAME we could significantly decrease IOA production of ROS. Moreover, using NAC to block ROS, we could significantly suppress IOA-induced antiproliferation, antimigration, and anti-invasion. Finally, we found that IOA inhibited the migration and invasion of A549 cell migration and invasion. Taken together, these results suggest that IOA has anticancer effects on A549 cells.
منابع مشابه
Isoobtusilactone A induces cell cycle arrest and apoptosis through reactive oxygen species/apoptosis signal-regulating kinase 1 signaling pathway in human breast cancer cells.
This study is the first to investigate the anticancer effect of isoobtusilactone A (IOA) in two human breast cancer cell lines, MCF-7 and MDA-MB-231. IOA exhibited effective cell growth inhibition by inducing cancer cells to undergo G(2)-M phase arrest and apoptosis. Further investigation revealed that IOA's inhibition of cell growth was also evident in a nude mice model. Cell cycle blockade wa...
متن کاملنقش استرس اکسیداتیو در تکثیر بیرویه و مرگ سلولی
Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملO 22: Reactive Oxygen Species and Epilepsy
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...
متن کاملCurcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3.
Curcumin (diferuloylmethane), the yellow pigment in turmeric (Curcuma longa), is known to inhibit proliferation of cancer cells by arresting them at various phases of the cell cycle and to induce apoptosis in tumor cells. Curcumin-induced apoptosis mainly involves the activation of caspase-3 and mitochondria-mediated pathway in various cancer cells of different tissue origin. In the present stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of natural products
دوره 71 6 شماره
صفحات -
تاریخ انتشار 2008